Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Erika Kaiser-Morris, ${ }^{\text {a }}$ * Alain
Cousson, ${ }^{\text {a }}$ Werner Paulus ${ }^{\text {b }}$ and Francois Fillaux ${ }^{\text {c }}$
${ }^{\text {a }}$ Laboratoire Léon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette CEDEX, France, ${ }^{\text {b }}$ Université de
Rennes 1, LCSIM/UMR 6511, Campus de
Beaulieu, Avenue du Général Leclerc, 35042
Rennes Cedex, France, and ${ }^{\text {c LADIR, }} 2$ rue Henry
Dunant, 94320 Thiais, France

Key indicators

Single-crystal neutron study
$T=5 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.016$
Data-to-parameter ratio $=7.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

2,6-Dimethylpyrazine at 5 K : a neutron-diffraction study

Single-crystal neutron-diffraction techniques are used to determine the crystal structure of 2,6-dimethylpyrazine (DMP), $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$, at 5 K . The space group is $P 2_{1} / a$ with $Z=$ 4, as at room temperature. The methyl groups are ordered. There are two crystallographically inequivalent methyl groups in the unit cell. Different rotational dynamics may account for the two rotational tunnelling transitions observed with inelastic neutron-scattering techniques.

Comment

As found for the structure of this material, (I), at 20 K (KaiserMorris et al., 2001), the space group is $P 2_{1} / a$ (monoclinic) with four molecules per unit cell. There is no evidence for any phase transition between 20 and 5 K , and no significant changes of the lattice parameters below 20 K .

(I)

The structure consists of parallel layers of planar molecules perpendicular to the ($\overline{201}$) plane (Kaiser-Morris et al., 2001). The protons of the methyl groups are quite localized at all temperatures. For each methyl group, one of the protons is almost in the molecular plane. The displacement ellipsoids for both methyl groups correspond quite well to those anticipated for hindered rotors with a rather high potential barrier and threefold symmetry (Fig. 1). There are two different crystallographic environments for the methyl groups linked to the same pyrazine ring. The different local potentials may account for the different tunnelling frequencies. This is confirmed by further inelastic neutron-scattering measurements performed on single crystals (Nicolaï et al., 1998).

Experimental

2,6-Dimethylpyrazine (DMP) is hygroscopic and melts at 311 K . We performed neutron-diffraction experiments with a single crystal at 5 K on the four-circle neutron diffractometer 5-C2 at the LLB (Saclay, France). A large single crystal ($1 \times 1 \times 5 \mathrm{~cm}$) was obtained at low temperature. A small single crystal ($5 \times 5 \times 5 \mathrm{~mm}$) was cut, glued on a goniometer head and oriented on 5-C2. The measurements were performed with the ω scan mode and an incident wavelength close to $0.83 \AA$ selected with the $\mathrm{Cu}(220)$ monochromator.

Received 4 September 2001
Accepted 19 October 2001
Online 27 October 2001

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$
$M_{r}=108.14$
Monoclinic, $P 2_{1} / a$
$a=7.287$ (7) \AA 。
$b=10.725(9) \AA$
$c=7.452$ (8) \AA
$\beta=90.37(9)^{\circ}$
$V=582.4 \AA^{3}$
$Z=4$
$D_{x}=1.23 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Orphée reactor (Saclay, France):
5-C2 four-circle
ω scans
Absorption correction: none
2026 measured reflections
1605 independent reflections
1153 reflections with $I>3 \sigma(I)$
$R_{\mathrm{int}}=0.022$

Refinement

Refinement on F
$R=0.032$
$w R=0.016$
$S=1.04$
1153 reflections
146 parameters
All H-atom parameters refined
Weighting scheme: Chebychev polynomial with 5 parameters: $0.951,-3.12,0.00654,-0.885$, -0.649 (Carruthers \& Watkin, 1979)

Neutron radiation
$\lambda=0.8308 \AA$
Cell parameters from 16 reflections
$\theta=9.8-21.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=5 \mathrm{~K}$
Prism, white
$5.0 \times 5.0 \times 5.0 \mathrm{~mm}$
$\theta_{\text {max }}=35^{\circ}$
$h=-10 \rightarrow 10$
$k=-14 \rightarrow 4$
$l=-10 \rightarrow 4$
2 standard reflections frequency: 450 min intensity decay: none
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.78 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.73 \mathrm{e}^{-3}$
Extinction correction: Larson (1970)

Extinction coefficient: 2.39 (18)
Atomic scattering factors from Sears (1992)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{N} 1-\mathrm{C} 1$	$1.3341(11)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.4023(12)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.3397(11)$	$\mathrm{C} 2-\mathrm{C} 5$	$1.4991(13)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.340(1)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.3982(13)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.3394(11)$	$\mathrm{C} 3-\mathrm{C} 6$	$1.4980(12)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$116.27(7)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	$120.37(8)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$117.44(7)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.71(8)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$122.04(8)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 6$	$117.74(8)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$121.07(8)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 6$	$121.55(8)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 5$	$118.56(8)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$122.47(8)$

Figure 1
The molecular structure of (I) at 5 K , with 50% probability displacement ellipsoids. For a packing diagram, see the preceding paper (Kaiser-Morris et al., 2001).

Data collection: DIF4N (modified Linux version of DIF4; Stoe \& Cie; 2000); cell refinement: $D I F 4 N$; data reduction: PRON (modified version of REDU4; Stoe \& Cie, 2000); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

We thank J. Godard from the Parc d'Orsay, France for providing the single crystals.

References

Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Kaiser-Morris, E., Nicolaï, B., Cousson, A., Paulus, W. \& Fillaux, F. (2001). Acta Cryst. E57, o1113-o1114.
Larson A. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291-294. Copenhagen: Munksgaard.
Nicolaï, B., Kaiser, E., Fillaux, F., Kearley, G. J., Cousson, A. \& Paulus, W. (1998). Chem. Phys. 26, 1-13.

Sears, V. F. (1992). Neutron News, 3, 26-37.
Stoe \& Cie (2000). DIF4 and PRON Software. Stoe \& Cie, Darmstadt, Germany.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
Watkin, D. J., Prout, C. K., Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.

